Rutgers University: Algebra Written Qualifying Exam August 2010: Day 1 Problem 1 Solution

Exercise. Prove that no group of order 3400 is simple.

Solution.

Let G be a group of order 3400 . We want to show that there is a normal subgroup of G that is not $\{e\}$ or G.

$$
3400=2^{3} \cdot 5^{2} \cdot 17
$$

By the third Sylow theorem,

$$
\begin{array}{clll}
& n_{17} \mid\left(2^{3} \cdot 5^{2}\right) \\
\text { and } & n_{17} \equiv 1 \bmod 17 & \Longrightarrow & n_{17}=1,2,4,5,8,10,20,25,40,50,100,200 \\
\Longrightarrow \quad & n_{17}=1
\end{array}
$$

Since the number of 17 -Sylow subgroups is $n_{17}=1$, the 17 -Sylow subgroup is a normal subgroup of G by the Second Sylow Theorem.
Thus, G is not simple.

